Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 284
1.
PLoS One ; 19(5): e0302579, 2024.
Article En | MEDLINE | ID: mdl-38722969

Since March 2020, the COVID-19 pandemic has swiftly propagated, triggering a competitive race among medical firms to forge vaccines that thwart the infection. Lebanon initiated its vaccination campaign on February 14, 2021. Despite numerous studies conducted to elucidate the characteristics of immune responses elicited by vaccination, the topic remains unclear. Here, we aimed to track the progression of anti-spike SARS-CoV-2 antibody titers at two-time points (T1: shortly after the second vaccination dose, T2: six months later) within a cohort of 201 adults who received Pfizer-BioNTech (BNT162b2), AstraZeneca, or Sputnik V vaccines in North Lebanon. Blood specimens were obtained from participants, and antibody titers against SARS-CoV-2 were quantified through the Elecsys-Anti-SARS-CoV-2 S assay (Roche Diagnostics, Switzerland). We used univariate analysis and multivariable logistic regression models to predict determinants influencing the decline in immune response and the occurrence of breakthrough infections among vaccinated patients. Among the 201 participants, 141 exhibited unchanging levels of antibody titers between the two sample collections, 55 displayed waning antibody titers, and only five participants demonstrated heightened antibody levels. Notably, age emerged as the sole variable significantly linked to the waning immune response. Moreover, the BNT162b2 vaccine exhibited significantly higher efficacy concerning the occurrence of breakthrough infections when compared with the AstraZeneca vaccine. Overall, our study reflected the immune status of a sample of vaccinated adults in North Lebanon. Further studies on a larger scale are needed at the national level to follow the immune response after vaccination, especially after the addition of the third vaccination dose.


Antibodies, Viral , COVID-19 , SARS-CoV-2 , Humans , Male , Lebanon/epidemiology , Female , Adult , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , Antibodies, Viral/blood , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Vaccination , Aged , Young Adult , BNT162 Vaccine/immunology , Breakthrough Infections
2.
PLoS One ; 19(5): e0303244, 2024.
Article En | MEDLINE | ID: mdl-38728294

To predict protective immunity to SARS-CoV-2, cellular immunity seems to be more sensitive than humoral immunity. Through an Interferon-Gamma (IFN-γ) Release Assay (IGRA), we show that, despite a marked decrease in total antibodies, 94.3% of 123 healthcare workers have a positive cellular response 6 months after inoculation with the 2nd dose of BNT162b2 vaccine. Despite the qualitative relationship found, we did not observe a quantitative correlation between IFN-γ and IgG levels against SARS-CoV-2. Using stimulated whole blood from a subset of participants, we confirmed the specific T-cell response to SARS-CoV-2 by dosing elevated levels of the IL-6, IL-10 and TNF-α. Through a 20-month follow-up, we found that none of the infected participants had severe COVID-19 and that the first positive cases were only 12 months after the 2nd dose inoculation. Future studies are needed to understand if IGRA-SARS-CoV-2 can be a powerful diagnostic tool to predict future COVID-19 severe disease, guiding vaccination policies.


Antibodies, Viral , BNT162 Vaccine , COVID-19 , Health Personnel , Interferon-gamma Release Tests , SARS-CoV-2 , Humans , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Male , SARS-CoV-2/immunology , Adult , Middle Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , Interferon-gamma/blood , Vaccination , Immunoglobulin G/blood , Immunoglobulin G/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Immunity, Cellular , Interleukin-10/blood , Interleukin-10/immunology , Interleukin-6/blood , Interleukin-6/immunology , Tumor Necrosis Factor-alpha/blood
3.
Elife ; 122024 May 08.
Article En | MEDLINE | ID: mdl-38716629

SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αß sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR- and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). After the 2nd vaccination, T cell clonotypes highly responsive to recall S stimulation were polarized to follicular helper T (Tfh)-like cells in donors exhibiting sustained anti-S antibody titers (designated as 'sustainers'), but not in 'decliners'. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic microbes. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh-like cells upon vaccination may contribute to the longevity of anti-S antibody titers.


Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Spike Glycoprotein, Coronavirus/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Female , Male , Epitopes, T-Lymphocyte/immunology , Adult , T-Lymphocytes, Helper-Inducer/immunology , Middle Aged
4.
JCI Insight ; 9(9)2024 May 08.
Article En | MEDLINE | ID: mdl-38716734

mRNA vaccines are likely to become widely used for the prevention of infectious diseases in the future. Nevertheless, a notable gap exists in mechanistic data, particularly concerning the potential effects of sequential mRNA immunization or preexisting immunity on the early innate immune response triggered by vaccination. In this study, healthy adults, with or without documented prior SARS-CoV-2 infection, were vaccinated with the BNT162b2/Comirnaty mRNA vaccine. Prior infection conferred significantly stronger induction of proinflammatory and type I IFN-related gene signatures, serum cytokines, and monocyte expansion after the prime vaccination. The response to the second vaccination further increased the magnitude of the early innate response in both study groups. The third vaccination did not further increase vaccine-induced inflammation. In vitro stimulation of PBMCs with TLR ligands showed no difference in cytokine responses between groups, or before or after prime vaccination, indicating absence of a trained immunity effect. We observed that levels of preexisting antigen-specific CD4 T cells, antibody, and memory B cells correlated with elements of the early innate response to the first vaccination. Our data thereby indicate that preexisting memory formed by infection may augment the innate immune activation induced by mRNA vaccines.


BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Cytokines , Immunity, Innate , SARS-CoV-2 , Vaccination , Humans , Immunity, Innate/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Adult , Male , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Female , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Vaccination/methods , Cytokines/immunology , mRNA Vaccines/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Middle Aged , CD4-Positive T-Lymphocytes/immunology , Young Adult , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage
5.
Influenza Other Respir Viruses ; 18(5): e13290, 2024 May.
Article En | MEDLINE | ID: mdl-38706402

BACKGROUND: Priming with ChAdOx1 followed by heterologous boosting is considered in several countries. Nevertheless, analyses comparing the immunogenicity of heterologous booster to homologous primary vaccination regimens and natural infection are lacking. In this study, we aimed to conduct a comparative assessment of the immunogenicity between homologous primary vaccination regimens and heterologous prime-boost vaccination using BNT162b2 or mRNA-1273. METHODS: We matched vaccinated naïve (VN) individuals (n = 673) with partial vaccination (n = 64), primary vaccination (n = 590), and primary series plus mRNA vaccine heterologous booster (n = 19) with unvaccinated naturally infected (NI) individuals with a documented primary SARS-CoV-2 infection (n = 206). We measured the levels of neutralizing total antibodies (NTAbs), total antibodies (TAbs), anti-S-RBD IgG, and anti-S1 IgA titers. RESULTS: Homologous primary vaccination with ChAdOx1 not only showed less potent NTAb, TAb, anti-S-RBD IgG, and anti-S1 IgA immune responses compared to primary BNT162b2 or mRNA-1273 vaccination regimens (p < 0.05) but also showed ~3-fold less anti-S1 IgA response compared to infection-induced immunity (p < 0.001). Nevertheless, a heterologous booster led to an increase of ~12 times in the immune response when compared to two consecutive homologous ChAdOx1 immunizations. Furthermore, correlation analyses revealed that both anti-S-RBD IgG and anti-S1 IgA significantly contributed to virus neutralization among NI individuals, particularly in symptomatic and pauci-symptomatic individuals, whereas among VN individuals, anti-S-RBD IgG was the main contributor to virus neutralization. CONCLUSION: The results emphasize the potential benefit of using heterologous mRNA boosters to increase antibody levels and neutralizing capacity particularly in patients who received primary vaccination with ChAdOx1.


2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Humans , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , Male , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , SARS-CoV-2/immunology , Adult , 2019-nCoV Vaccine mRNA-1273/immunology , Middle Aged , Immunoglobulin A/blood , Immunoglobulin A/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Young Adult , Follow-Up Studies , Vaccination , Aged , Immunogenicity, Vaccine , Antibody Formation/immunology , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/administration & dosage , Spike Glycoprotein, Coronavirus/immunology
6.
Curr Microbiol ; 81(7): 171, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739274

A third booster doses for the 2019 coronavirus disease (COVID-19) is widely used all over the world, especially in risky individuals, with the recommendation of WHO. The purpose of this study was to evaluate the effectiveness of mRNA (BNT162b2), and CoronaVac (Sinovac Biotech) vaccines as a reminder dose following two doses of CoronaVac against COVID-19 infection, serious illness, and mortality in the geriatric population aged 75 and older during the delta variant dominant period. Our study comprised 2730 individuals the age of 75 and older in total, of which 1082 (39.6%) were male and 1648 (60.4%) were female. The vaccine effectiveness (VE) of 2 doses of CoronaVac + 1 dose of BNT162b2 vaccine combination against COVID-19 was determined as 89.2% (95% Confidence interval (CI) 80.7-93.9%), while the VE of 3 doses of CoronaVac vaccine was determined as 80.4% (95% CI 60.5-90.2%). Geriatric patients who received three doses of CoronaVac vaccine did not need intensive care. No deaths were observed in the vaccinated groups. While the VE of vaccination with 2 doses of CoronaVac + 1 dose of BNT162b2 was 41.8% (95% CI 0-74.1%) against hospitalization, 64.4% (95% CI 0-94.7%) against intensive care unit admission, the VE of vaccination with three doses of the CoronaVac was 78.2% (95% CI 0-96.5%) against hospitalization. In conclusion, our research showed that, even with the emergence of viral variants, a third dose of the CoronaVac and BNT162b2 vaccines is highly effective against symptomatic SARS-CoV-2 infection. Third-dose vaccination regimens, including heterologous and homologous vaccines, can be an effective tool in controlling the COVID-19 pandemic and the emergence of new variants.


BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Vaccine Efficacy , Humans , Aged , COVID-19/prevention & control , COVID-19/immunology , Female , Male , Aged, 80 and over , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , Vaccination
7.
Elife ; 132024 Apr 24.
Article En | MEDLINE | ID: mdl-38656290

Background: End-stage renal disease (ESRD) patients experience immune compromise characterized by complex alterations of both innate and adaptive immunity, and results in higher susceptibility to infection and lower response to vaccination. This immune compromise, coupled with greater risk of exposure to infectious disease at hemodialysis (HD) centers, underscores the need for examination of the immune response to the COVID-19 mRNA-based vaccines. Methods: The immune response to the COVID-19 BNT162b2 mRNA vaccine was assessed in 20 HD patients and cohort-matched controls. RNA sequencing of peripheral blood mononuclear cells was performed longitudinally before and after each vaccination dose for a total of six time points per subject. Anti-spike antibody levels were quantified prior to the first vaccination dose (V1D0) and 7 d after the second dose (V2D7) using anti-spike IgG titers and antibody neutralization assays. Anti-spike IgG titers were additionally quantified 6 mo after initial vaccination. Clinical history and lab values in HD patients were obtained to identify predictors of vaccination response. Results: Transcriptomic analyses demonstrated differing time courses of immune responses, with prolonged myeloid cell activity in HD at 1 wk after the first vaccination dose. HD also demonstrated decreased metabolic activity and decreased antigen presentation compared to controls after the second vaccination dose. Anti-spike IgG titers and neutralizing function were substantially elevated in both controls and HD at V2D7, with a small but significant reduction in titers in HD groups (p<0.05). Anti-spike IgG remained elevated above baseline at 6 mo in both subject groups. Anti-spike IgG titers at V2D7 were highly predictive of 6-month titer levels. Transcriptomic biomarkers after the second vaccination dose and clinical biomarkers including ferritin levels were found to be predictive of antibody development. Conclusions: Overall, we demonstrate differing time courses of immune responses to the BTN162b2 mRNA COVID-19 vaccination in maintenance HD subjects comparable to healthy controls and identify transcriptomic and clinical predictors of anti-spike IgG titers in HD. Analyzing vaccination as an in vivo perturbation, our results warrant further characterization of the immune dysregulation of ESRD. Funding: F30HD102093, F30HL151182, T32HL144909, R01HL138628. This research has been funded by the University of Illinois at Chicago Center for Clinical and Translational Science (CCTS) award UL1TR002003.


Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Kidney Failure, Chronic , Renal Dialysis , SARS-CoV-2 , Humans , Male , Female , Middle Aged , COVID-19/immunology , COVID-19/prevention & control , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Viral/blood , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Kidney Failure, Chronic/immunology , Transcriptome , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Immunoglobulin G/blood , mRNA Vaccines/immunology , Vaccination
8.
Viruses ; 16(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38675894

Booster doses of the SARS-CoV-2 vaccine have been recommended to improve and prolong immunity, address waning immunity over time, and contribute to the control of the COVID-19 pandemic. A heterologous booster vaccine strategy may offer advantages over a homologous approach. To compare the immunogenicity of two doses of BNT162b2 mRNA COVID-19 vaccine with a ChAdOx1-S booster dose, immunoglobulin G (IgG) anti-spike (anti-S) and anti-nucleocapsid (anti-N) antibody titers (Ab) were compared over 1 year and post-booster vaccination. Results showed that, at 3- to 9-month assessments in vaccinated subjects, an-ti-N Ab were undetectable in participants with no history of COVID-19. In contrast, anti-S Ab measurements were lower than those with COVID-19, and a decrease was observed during the 9 months of observation. After booster vaccination, no differences were found in anti-S between participants who reported a history of COVID-19 and those who did not. Anti-S levels were higher after booster vaccination measurement vs. at 9 months in participants with COVID-19 and without COVID-19, i.e., independent of an infection history. Vaccine administration elicited a response of higher anti-S IgG levels in those infected before vaccination, although levels decreased during the first nine months. IgG anti-N titers were higher in participants with a history of declared infection and who were asymptomatic. The ChAdOx1-S booster increased anti-S Ab levels in participants regardless of whether they had been infected or not to a significantly higher value than with the first two vaccines. These findings underscore the importance of booster vaccination in eliciting a robust and sustained immune response against COVID-19, regardless of the prior infection status.


Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , Immunoglobulin G , Military Personnel , SARS-CoV-2 , Humans , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , COVID-19/prevention & control , COVID-19/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Male , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Adult , Mexico , Female , Immunoglobulin G/blood , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/administration & dosage , Young Adult , Vaccination , Middle Aged
9.
Article En | MEDLINE | ID: mdl-38656040

Inactivated COVID-19 vaccines data in immunocompromised individuals are scarce. This trial assessed the immunogenicity of two CoronaVac doses and additional BNT162b2 mRNA vaccine doses in immunocompromised (IC) and immunocompetent (H) individuals. Adults with solid organ transplant (SOT), hematopoietic stem cell transplant, cancer, inborn immunity errors or rheumatic diseases were included in the IC group. Immunocompetent adults were used as control group for comparison. Participants received two CoronaVac doses within a 28-day interval. IC received two additional BNT162b2 doses and H received a third BNT162b2 dose (booster). Blood samples were collected at baseline, 28 days after each dose, pre-booster and at the trial end. We used three serological tests to detect antibodies to SARS-CoV-2 nucleocapsid (N), trimeric spike (S), and receptor binding domain (RBD). Outcomes included seroconversion rates (SCR), geometric mean titers (GMT) and GMT ratio (GMTR). A total of 241 IC and 100 H adults participated in the study. After two CoronaVac doses, IC had lower SCR than H: anti-N, 33.3% vs 79%; anti-S, 33.8% vs 86%, and anti-RBD, 48.5% vs 85%, respectively. IC also showed lower GMT than H: anti-N, 2.3 vs 15.1; anti-S, 58.8 vs 213.2 BAU/mL; and anti-RBD, 22.4 vs 168.0 U/mL, respectively. After the 3rd and 4th BNT162b2 doses, IC had significant anti-S and anti-RBD seroconversion, but still lower than H after the 3rd dose. After boosting, GMT increased in IC, but remained lower than in the H group. CoronaVac two-dose schedule immunogenicity was lower in IC than in H. BNT162b2 heterologous booster enhanced immune response in both groups.


Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunocompromised Host , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , Immunocompromised Host/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Male , Female , Adult , Middle Aged , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Viral/blood , SARS-CoV-2/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Aged , Immunocompetence/immunology , Young Adult , Immunization, Secondary
10.
BMC Infect Dis ; 24(1): 436, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658874

BACKGROUND: Studies have shown that Omicron breakthrough infections can occur at higher SARS-CoV-2 antibody levels compared to previous variants. Estimating the magnitude of immunological protection induced from COVID-19 vaccination and previous infection remains important due to varying local pandemic dynamics and types of vaccination programmes, particularly among at-risk populations such as health care workers (HCWs). We analysed a follow-up SARS-CoV-2 serological survey of HCWs at a tertiary COVID-19 referral hospital in Germany following the onset of the Omicron variant. METHODS: The serological survey was conducted in January 2022, one year after previous surveys in 2020 and the availability of COVID-19 boosters including BNT162b2, ChAdOx1-S, and mRNA-1273. HCWs voluntarily provided blood for serology and completed a comprehensive questionnaire. SARS-CoV-2 serological analyses were performed using an Immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA). Antibody levels were reported according to HCW demographic and occupational characteristics, COVID-19 vaccination and SARS-CoV-2 infection history, and multivariate linear regression was used to evaluate these associations. RESULTS: In January 2022 (following the fourth COVID-19 wave in Germany including the onset of the Omicron variant), 1482/1517 (97.7%) HCWs tested SARS-CoV-2 seropositive, compared to 4.6% in December 2020 (second COVID-19 wave). Approximately 80% had received three COVID-19 vaccine doses and 15% reported a previous laboratory-confirmed SARS-CoV-2 infection. SARS-CoV-2 IgG geometric mean titres ranged from 335 (95% Confidence Intervals [CI]: 258-434) among those vaccinated twice and without previous infection to 2204 (95% CI: 1919-2531) among those vaccinated three times and with previous infection. Heterologous COVID-19 vaccination combinations including a mRNA-1273 booster were significantly associated with the highest IgG antibody levels compared to other schemes. There was an 8-to 10-fold increase in IgG antibody levels among 31 HCWs who reported a SARS-CoV-2 infection in May 2020 to January 2022 after COVID-19 booster vaccination. CONCLUSIONS: Our findings demonstrate the importance of ongoing COVID-19 booster vaccination strategies in the context of variants such as Omicron and despite hybrid immunity from previous SARS-CoV-2 infections, particularly for at-risk populations such as HCWs. Where feasible, effective types of booster vaccination, such as mRNA vaccines, and the appropriate timing of administration should be carefully considered.


Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Health Personnel , Immunization, Secondary , Immunoglobulin G , SARS-CoV-2 , Humans , Health Personnel/statistics & numerical data , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , Male , Female , Antibodies, Viral/blood , Adult , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Middle Aged , Germany/epidemiology , Immunoglobulin G/blood , Follow-Up Studies , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/administration & dosage , Vaccination/statistics & numerical data , Cohort Studies
11.
Vaccine ; 42(14): 3307-3320, 2024 May 22.
Article En | MEDLINE | ID: mdl-38616439

BACKGROUND: Vaccines were developed and deployed to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This study aimed to characterize patterns in the protection provided by the BNT162b2 and mRNA-1273 mRNA vaccines against a spectrum of SARS-CoV-2 infection symptoms and severities. METHODS: A national, matched, test-negative, case-control study was conducted in Qatar between January 1 and December 18, 2021, utilizing a sample of 238,896 PCR-positive tests and 6,533,739 PCR-negative tests. Vaccine effectiveness was estimated against asymptomatic, symptomatic, severe coronavirus disease 2019 (COVID-19), critical COVID-19, and fatal COVID-19 infections. Data sources included Qatar's national databases for COVID-19 laboratory testing, vaccination, hospitalization, and death. RESULTS: Effectiveness of two-dose BNT162b2 vaccination was 75.6% (95% CI: 73.6-77.5) against asymptomatic infection and 76.5% (95% CI: 75.1-77.9) against symptomatic infection. Effectiveness against each of severe, critical, and fatal COVID-19 infections surpassed 90%. Immediately after the second dose, all categories-namely, asymptomatic, symptomatic, severe, critical, and fatal COVID-19-exhibited similarly high effectiveness. However, from 181 to 270 days post-second dose, effectiveness against asymptomatic and symptomatic infections declined to below 40%, while effectiveness against each of severe, critical, and fatal COVID-19 infections remained consistently high. However, estimates against fatal COVID-19 often had wide 95% confidence intervals. Analogous patterns were observed in three-dose BNT162b2 vaccination and two- and three-dose mRNA-1273 vaccination. Sensitivity analyses confirmed the results. CONCLUSION: A gradient in vaccine effectiveness exists and is linked to the symptoms and severity of infection, providing higher protection against more symptomatic and severe cases. This gradient intensifies over time as vaccine immunity wanes after the last vaccine dose. These patterns appear consistent irrespective of the vaccine type or whether the vaccination involves the primary series or a booster.


2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , Humans , COVID-19/prevention & control , COVID-19/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Qatar/epidemiology , SARS-CoV-2/immunology , Male , 2019-nCoV Vaccine mRNA-1273/immunology , Middle Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Female , Adult , Case-Control Studies , Young Adult , Adolescent , Aged , Severity of Illness Index , Vaccination/methods
12.
Int J Infect Dis ; 143: 107028, 2024 Jun.
Article En | MEDLINE | ID: mdl-38583825

OBJECTIVES: An increase evasion of the SARS-CoV-2 virus toward vaccination strategies and natural immunity has been rapidly described notably because of the mutations in the spike receptor binding domain and the N-terminal domain. METHODS: Participants of the CRO-VAX HCP study who received the bivalent booster were followed up at 6 months. A pseudovirus-neutralization test was used to assess the neutralization potency of antibodies against D614G, Delta, BA.1, BA.5, XBB.1.5, BA.2.86, FL.1.5.1, and JN-1. RESULTS: The neutralizing capacity of antibodies against the Omicron variant or its subvariants was significantly reduced compared with D614G and Delta (P <0.0001). The lowest neutralizing response that was observed with JN-1 (geometric mean titers [GMTs] = 22.1) was also significantly lower than XBB.1.5 (GMT = 29.5, P <0.0001), BA.2.86 (GMT = 29.6, P <0.0001), and FL.1.5.1 (GMT = 25.2, P <0.0001). Participants who contracted a breakthrough infection because of XBB.1.5 had significantly higher neutralizing antibodies against all variants than uninfected participants, especially against the Omicron variant and its subvariants. CONCLUSIONS: Our results confirm that JN.1 is one of the most immune-evading variants to date and that the BA.2.86 subvariant did not show an increased immunity escape compared with XBB.1.5. The stronger response in breakthrough infection cases with the Omicron variant and its subvariants supports the need to use vaccine antigens that target circulating variants.


Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Humans , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Male , Female , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Adult , Middle Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Neutralization Tests
13.
Kaohsiung J Med Sci ; 40(5): 477-488, 2024 May.
Article En | MEDLINE | ID: mdl-38363080

The immune response of patients with chronic liver disease tends to be lower after receiving their second coronavirus disease 2019 (COVID-19) vaccine dose, but the effect of a third vaccine dose on their immune response is currently unknown. We recruited 722 patients without previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection from three hospitals. The patients received homologous (MMM) and heterologous (AZAZBNT, AZAZM) boosters, where AZ, BNT, and M denoted the AZD1222, BNT162b2, and mRNA-1273 vaccines, respectively. Serum IgG spike antibody levels were measured at a mean 1.5 ± 0.7 (visit 1) and 5.0 ± 0.5 (visit 2) months after the third vaccine booster. A threshold of 4160 AU/mL was considered significant antibody activity. In both visits, the patients who received the MMM booster had higher anti-S-IgG levels than those who received the AZAZBNT and AZAZM boosters. Patients with active hepatocellular carcinoma (HCC) had lower anti-S-IgG levels than the control group (761.6 vs. 1498.2 BAU/mL; p = 0.019) at visit 1. The anti-S-IgG levels decreased significantly at visit 2. The patients with significant antibody activity had a lower rate of liver cirrhosis with decompensation (0.7% decompensation vs. 8.0% non-decompensation and 91.3% non-liver cirrhosis, p = 0.015), and active HCC (1.5% active HCC vs. 3.7% non-active HCC and 94.7% non-HCC, p < 0.001). Receiving the MMM booster regimen (OR = 10.67, 95% CI 5.20-21.91, p < 0.001) increased the odds of having significant antibody activity compared with the AZAZBNT booster regimen. Patients with active HCC had a reduced immune response to the third COVID-19 vaccine booster. These findings underscore the importance of booster vaccinations, especially in immunocompromised patients, with superior efficacy observed with the homologous mRNA-1273 regimen.


Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Carcinoma, Hepatocellular , Immunization, Secondary , Immunoglobulin G , Liver Neoplasms , SARS-CoV-2 , Humans , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/immunology , Male , Female , Middle Aged , Immunoglobulin G/blood , Immunoglobulin G/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Aged , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Immunogenicity, Vaccine
14.
Clin Transl Gastroenterol ; 15(4): e00688, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38349178

INTRODUCTION: Studies suggest that the generation of durable T-cell immunity following coronavirus disease 2019 (COVID-19) vaccination protects against severe disease. The aim of this study was to measure cell-mediated immune response (CMIR) 1-2 months and 6 months after a third dose of a COVID-19 mRNA vaccine. METHODS: This prospective study (HumoRal and CellULar initial and Sustained immunogenicity in patients with inflammatory bowel disease [IBD]) evaluated CMIR at 28-65 days (t 1 ) after dose 2, 28-65 days (t 2 ) (n = 183) and 6 months (±45 days) (t 3 ) (n = 167) after a third dose of an mRNA COVID-19 vaccine. A small cohort had blood sample available 28-65 days (t 4 ) (n = 55) after a fourth dose. Primary outcomes were CMIR at (t 2 ) and (t 3 ). Secondary outcomes included the effect of immunosuppressing IBD medications on CMIR and response at (t 4 ). RESULTS: All patients had measurable CMIR at all time points. CMIR increased at t 2 compared with that at t 1 (median 1,467 responding cells per million (interquartile range [IQR] 410-5,971) vs 313 (94-960) P < 0.001). There was no significant waning in t 2 vs t 3 or significant boosting at t 4 . Those on anti-tumor necrosis factor monotherapy had a higher CMIR compared with those not on this therapy at t 2 (4,132 [IQR 1,136-8,795] vs 869 [IQR 343-3,221] P < 0.001) and t 3 (2,843 [IQR 596-6,459] vs 654 [IQR 143-2,067] P < 0.001). In univariable analysis, anti-tumor necrosis factor monotherapy was associated with a higher CMIR at t 2 ( P < 0.001) and t 3 ( P < 0.001) and confirmed in a multivariable model ( P < 0.001). DISCUSSION: A third dose of a COVID-19 vaccine boosts CMIR, and the response is sustained in patients with IBD.


COVID-19 Vaccines , COVID-19 , Immunity, Cellular , Inflammatory Bowel Diseases , SARS-CoV-2 , Humans , Male , Female , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/drug therapy , Prospective Studies , Middle Aged , Adult , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Immunity, Cellular/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Immunogenicity, Vaccine , Tumor Necrosis Factor Inhibitors/administration & dosage , Tumor Necrosis Factor Inhibitors/therapeutic use , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , T-Lymphocytes/immunology , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/therapeutic use , Aged
16.
Nature ; 625(7993): 189-194, 2024 Jan.
Article En | MEDLINE | ID: mdl-38057663

In vitro-transcribed (IVT) mRNAs are modalities that can combat human disease, exemplified by their use as vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IVT mRNAs are transfected into target cells, where they are translated into recombinant protein, and the biological activity or immunogenicity of the encoded protein exerts an intended therapeutic effect1,2. Modified ribonucleotides are commonly incorporated into therapeutic IVT mRNAs to decrease their innate immunogenicity3-5, but their effects on mRNA translation fidelity have not been fully explored. Here we demonstrate that incorporation of N1-methylpseudouridine into mRNA results in +1 ribosomal frameshifting in vitro and that cellular immunity in mice and humans to +1 frameshifted products from BNT162b2 vaccine mRNA translation occurs after vaccination. The +1 ribosome frameshifting observed is probably a consequence of N1-methylpseudouridine-induced ribosome stalling during IVT mRNA translation, with frameshifting occurring at ribosome slippery sequences. However, we demonstrate that synonymous targeting of such slippery sequences provides an effective strategy to reduce the production of frameshifted products. Overall, these data increase our understanding of how modified ribonucleotides affect the fidelity of mRNA translation, and although there are no adverse outcomes reported from mistranslation of mRNA-based SARS-CoV-2 vaccines in humans, these data highlight potential off-target effects for future mRNA-based therapeutics and demonstrate the requirement for sequence optimization.


Frameshifting, Ribosomal , Pseudouridine , RNA, Messenger , Animals , Humans , Mice , BNT162 Vaccine/adverse effects , BNT162 Vaccine/genetics , BNT162 Vaccine/immunology , Frameshifting, Ribosomal/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Pseudouridine/analogs & derivatives , Pseudouridine/metabolism , Ribosomes/metabolism , Protein Biosynthesis
17.
Immunohorizons ; 7(10): 635-651, 2023 10 01.
Article En | MEDLINE | ID: mdl-37819998

Spike-encoding mRNA vaccines in early 2021 effectively reduced SARS-CoV-2-associated morbidity and mortality. New booster regimens were introduced due to successive waves of distinct viral variants. Therefore, people now have a diverse immune memory resulting from multiple SARS-CoV-2 Ag exposures, from infection to following vaccination. This level of community-wide immunity can induce immunological protection from SARS-CoV-2; however, questions about the trajectory of the adaptive immune responses and long-term immunity with respect to priming and repeated Ag exposure remain poorly explored. In this study, we examined the trajectory of adaptive immune responses following three doses of monovalent Pfizer BNT162b2 mRNA vaccination in immunologically naive and SARS-CoV-2 preimmune individuals without the occurrence of breakthrough infection. The IgG, B cell, and T cell Spike-specific responses were assessed in human blood samples collected at six time points between a moment before vaccination and up to 6 mo after the third immunization. Overall, the impact of repeated Spike exposures had a lower improvement on T cell frequency and longevity compared with IgG responses. Natural infection shaped the responses following the initial vaccination by significantly increasing neutralizing Abs and specific CD4+ T cell subsets (circulating T follicular helper, effector memory, and Th1-producing cells), but it had a small benefit at long-term immunity. At the end of the three-dose vaccination regimen, both SARS-CoV-2-naive and preimmune individuals had similar immune memory quality and quantity. This study provides insights into the durability of mRNA vaccine-induced immunological memory and the effects of preimmunity on long-term responses.


BNT162 Vaccine , COVID-19 , mRNA Vaccines , Humans , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , Immunoglobulin G/immunology , mRNA Vaccines/immunology , SARS-CoV-2 , Vaccines, Synthetic/immunology , Immunogenicity, Vaccine/immunology , Vaccine Efficacy , Immunization, Secondary , Lymphocyte Subsets/immunology
18.
Expert Rev Vaccines ; 22(1): 378-392, 2023.
Article En | MEDLINE | ID: mdl-37078534

BACKGROUND: This study aimed to evaluate the safety and effectiveness of the BNT162b2 vaccine in immunocompromised adolescents and young adults. RESEARCH DESIGN AND METHODS: The study conducted a meta-analysis of post-marketing studies examining BNT162b2 vaccination efficacy and safety among immunocompromised adolescents and young adults worldwide. The review included nine studies and 513 individuals aged between 12 and 24.3 years. The study used a random effect model to estimate pooled proportions, log relative risk, and mean difference, and assessed heterogeneity using the I2 test. The study also examined publication bias using Egger's regression and Begg's rank correlation and assessed bias risk using ROBINS-I. RESULTS: The pooled proportions of combined local and systemic reactions after the first and second doses were 30% and 32%, respectively. Adverse events following immunization (AEFI) were most frequent in rheumatic diseases (40%) and least frequent in cystic fibrosis (27%), although hospitalizations for AEFIs were rare. The pooled estimations did not show a statistically significant difference between immunocompromised individuals and healthy controls for neutralizing antibodies, measured IgG, or vaccine effectiveness after the primary dose. However, the evidence quality is low to moderate due to a high risk of bias, and no study could rule out the risk of selection bias, ascertainment bias, or selective outcome reporting. CONCLUSIONS: This study provides preliminary evidence that the BNT162b2 vaccine is safe and effective in immunocompromised adolescents and young adults, but with low to moderate evidence quality due to bias risk. The study calls for improved methodological quality in studies involving specific populations.


BNT162 Vaccine , COVID-19 , Immunocompromised Host , Immunogenicity, Vaccine , Adolescent , Adult , Child , Humans , Young Adult , BNT162 Vaccine/immunology , COVID-19/prevention & control , Vaccination
19.
J Infect Dis ; 228(5): 564-575, 2023 08 31.
Article En | MEDLINE | ID: mdl-37104046

BACKGROUND: The number of exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to vaccine antigens affect the magnitude and avidity of the polyclonal response. METHODS: We studied binding and avidity of different antibody isotypes to the spike, the receptor-binding domain (RBD), and the nucleoprotein (NP) of wild-type (WT) and BA.1 SARS-CoV-2 in convalescent, mRNA vaccinated and/or boosted, hybrid immune individuals and in individuals with breakthrough cases during the peak of the BA.1 wave. RESULTS: We found an increase in spike-binding antibodies and antibody avidity with increasing number of exposures to infection and/or vaccination. NP antibodies were detectible in convalescent individuals and a proportion of breakthrough cases, but they displayed low avidity. Omicron breakthrough infections elicited high levels of cross-reactive antibodies between WT and BA.1 antigens in vaccinated individuals without prior infection directed against the spike and RBD. The magnitude of the antibody response and avidity correlated with neutralizing activity against WT virus. CONCLUSIONS: The magnitude and quality of the antibody response increased with the number of antigenic exposures, including breakthrough infections. However, cross-reactivity of the antibody response after BA.1 breakthroughs, was affected by the number of prior exposures.


Antibodies, Viral , Antibody Affinity , Breakthrough Infections , COVID-19 , SARS-CoV-2 , Animals , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , Breakthrough Infections/blood , Breakthrough Infections/immunology , Chlorocebus aethiops , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Serological Testing , SARS-CoV-2/immunology , Vaccination , Vero Cells , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use
20.
Front Immunol ; 14: 1131051, 2023.
Article En | MEDLINE | ID: mdl-36936955

The widely used ChAdOx1 nCoV-19 (ChAd) vector and BNT162b2 (BNT) mRNA vaccines have been shown to induce robust immune responses. Recent studies demonstrated that the immune responses of people who received one dose of ChAdOx1 and one dose of BNT were better than those of people who received vaccines with two homologous ChAdOx1 or two BNT doses. However, how heterologous vaccines function has not been extensively investigated. In this study, single-cell RNA sequencing data from three classes of samples: volunteers vaccinated with heterologous ChAdOx1-BNT and volunteers vaccinated with homologous ChAd-ChAd and BNT-BNT vaccinations after 7 days were divided into three types of immune cells (3654 B, 8212 CD4+ T, and 5608 CD8+ T cells). To identify differences in gene expression in various cell types induced by vaccines administered through different vaccination strategies, multiple advanced feature selection methods (max-relevance and min-redundancy, Monte Carlo feature selection, least absolute shrinkage and selection operator, light gradient boosting machine, and permutation feature importance) and classification algorithms (decision tree and random forest) were integrated into a computational framework. Feature selection methods were in charge of analyzing the importance of gene features, yielding multiple gene lists. These lists were fed into incremental feature selection, incorporating decision tree and random forest, to extract essential genes, classification rules and build efficient classifiers. Highly ranked genes include PLCG2, whose differential expression is important to the B cell immune pathway and is positively correlated with immune cells, such as CD8+ T cells, and B2M, which is associated with thymic T cell differentiation. This study gave an important contribution to the mechanistic explanation of results showing the stronger immune response of a heterologous ChAdOx1-BNT vaccination schedule than two doses of either BNT or ChAdOx1, offering a theoretical foundation for vaccine modification.


BNT162 Vaccine , ChAdOx1 nCoV-19 , Humans , BNT162 Vaccine/immunology , CD8-Positive T-Lymphocytes , ChAdOx1 nCoV-19/immunology , Machine Learning , COVID-19/prevention & control , CD4-Positive T-Lymphocytes
...